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Abstract

Cysteine (Cys) is the most reactive amino acid participating in a wide range of biologi-

cal functions. In-silico predictions complement the experiments to meet the need of

functional characterization. Multiple Cys function prediction algorithm is scarce, in

contrast to specific function prediction algorithms. Here we present a deep neural

network-based multiple Cys function prediction, available on web-server (DeepCys)

(https://deepcys.herokuapp.com/). DeepCys model was trained and tested on two

independent datasets curated from protein crystal structures. This prediction method

requires three inputs, namely, PDB identifier (ID), chain ID and residue ID for a given

Cys and outputs the probabilities of four cysteine functions, namely, disulphide,

metal-binding, thioether and sulphenylation and predicts the most probable Cys func-

tion. The algorithm exploits the local and global protein properties, like, sequence

and secondary structure motifs, buried fractions, microenvironments and protein/

enzyme class. DeepCys outperformed most of the multiple and specific Cys function

algorithms. This method can predict maximum number of cysteine functions. More-

over, for the first time, explicitly predicts thioether function. This tool was used to

elucidate the cysteine functions on domains of unknown functions belonging to cyto-

chrome C oxidase subunit-II like transmembrane domains. Apart from the web-

server, a standalone program is also available on GitHub (https://github.com/vam-

sin/deepcys).
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1 | INTRODUCTION

Cysteine is a key amino acid at the catalytic site of many enzymes.1

Unique chemical property of cysteine lies in its reactive thiol group,

that can act as a nucleophile and may contribute toward various bio-

logical functions. Cysteine functions are broadly categorized into four

groups observed in large number of biochemical reactions,

(a) Structural cysteines, disulphide formation, binding to co-factors,

that is, thioether formation, (b) metal-binding cysteines, present at

enzyme active sites and involved in heavy metal scavenging

(c) catalytic cysteines and (d) regulatory cysteines, involved in redox

mediated various post-translational modifications.2 Disulphide is the

most common post-translational modification that facilitates the cor-

rect folding in protein structure as mentioned for the first time by

Anfinsen.3 Disulphide bond is formed between two sulfur atoms (each

mentioned as half-cystine) coming from the same chain of a protein
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(intra-disulphide) or from different chains of a protein (inter-dis-

ulphide), leading to native protein structure. Many metalloproteins

(enzymes) involve cysteine as one of the metal-binding ligands, apart

from histidine.4,5 Thioester modifications, namely, acylation,6,7

palmitoylation,8-10 alkylation, and so forth, are commonly observed in

fatty acid synthesis and degradation pathways. Thioether linkages11

are often observed with ligands, especially heme (prosthetic) groups.12

Apart from the naturally occurring post-translational modifications of

cysteine many more modifications occur via reactive oxygen species13

induced oxidative stress,14 or reactive nitrogen species.15 Glutathione

is a cysteine-containing small molecule that can form disulphide bonds

with a cysteine residue from protein. Levels of glutathionylation are

often modulated by oxidative stress. However, glutathionylation may

happen under normal conditions facilitating redox signaling and vari-

ous other cellular activities. Persulphenylation is a modification mainly

observed in plants under stress conditions.16 Selenylation is mostly

used to derivatize and protect the cysteine thiol group from oxidation,

in vitro.17 This variety of cysteine functions and their possible implica-

tion on a wide range of biological functions, make the cysteine residue

an important target for function prediction in a given protein

(Figure 1). Amino acid function prediction became increasingly impor-

tant with the advent of the structure genomics consortium,18 where a

large number of protein crystal structures were solved with unknown

functions; 3970 such structures were reported on 25 September

2020 in PDB database.19 Prediction of functions in unknown proteins

or in hypothetical proteins were attempted earlier in different spe-

cies.20,21 However, experimental determination of amino acid function

is laborious, time-consuming, and expensive, hence, in-silico predic-

tion can complement the experiments.

Most of the existing cysteine prediction methods can predict one

particular type of function, termed, here as “specific cysteine function

prediction,” such as, disulphide prediction,22-29 metal-binding

prediction,30-39 and sulphenylation prediction.40-49 Besides the spe-

cific cysteine function prediction methods, four multiple cysteine

function prediction methods were known, namely, diamino acid neural

network application (DiANNA),50 COPA,51 ASP-C,52 and Cy-preds.53

DiANNA employed a support vector machine to predict the class of

the cysteine residue in three categories, a free cysteine, a half-cyste-

ine, or a ligand-bound cysteine. COPA was based on Cys proximity,

average low pKa value and exposure of the sulfur atom; the method

was capable of predicting reactive cysteines, namely, disulphide and

metal binding. ASP-C was capable of predicting reactive cysteines

based on active site profiling. Cy-preds was capable to predict three

different types of cysteine modifications, namely, disulphide, metal-

binding and post-translational modifications, based on energy compo-

nents and different profiling approaches.

Earlier we have annotated four cysteine functions, namely, dis-

ulphide, thioether, metal-binding, and sulphenylation, based on pro-

tein structural properties, like, buried fraction, quantitative

microenvironment descriptor (rHpy), secondary structure, and pKa

values.54-56 Only these four modifications were chosen because of

their abundance in PDB crystal structures. Inspired by these func-

tional annotations of cysteine, here we propose a deep neural

network-based model, DeepCys, that exploits six different protein

features, and predict any one of these four different cysteine modifi-

cations. The model was trained on high resolution protein crystal

structures containing total of 108 334 cysteine residues. Along with

the original training dataset, that is, without any sequence filter, two

F IGURE 1 Different post-translational modifications of cysteine residues. Modifications, generally, occurring under stress are shown in the
left panel and those often occur under normal conditions are shown in the right panel. The modifications studied in this work are shown within
boxes with a light blue background [Color figure can be viewed at wileyonlinelibrary.com]
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more nonredundant datasets, with 100% and 30% sequence identity fil-

ters, were used in order to check for overfitting of the data. Three differ-

ent models, namely, DeepCys original, DeepCys 100% and DeepCys

30%, were developed based on three different training datasets and the

results showed that performance of DeepCys original was the best

among all. Performance of the models was evaluated based on three

metrics, accuracy, specificity and sensitivity. The last parameter, sensitiv-

ity represented by number of true positives divided by total number of

true positives and false negatives, was the most effective for evaluating

multifunctional dataset. The DeepCys original model was tested upon an

independent test data set, consisting of 126 652 number of cysteine res-

idues from medium resolution crystal structures. A case study was per-

formed on total 66 cysteine datapoints from domains of unknown

functions (DUF) proteins belonging to cytochrome C oxidase subunit-II

like trans-membrane domains. The average sensitivity values for the test

and the DUF datasets were 79.25% and 87.22%, respectively. Perfor-

mance of DeepCys model was compared with the existing prediction

methods; DeepCys results were either comparable or better than these

methods. Novelty of the current method is, for the first time a method

can predict one out of four cysteine functions. Moreover, explicit predic-

tion of thioether is also done for the first time using DeepCys.

2 | MATERIALS AND METHODS

2.1 | Extraction of experimental information
for cysteine functions (modifications)

Four cysteine functions, namely, disulphide, metal-binding, thioether

and sulphenylation, were either extracted from PDB entries, using dis-

tance criteria, or the information was directly extracted from the PDB

header file. The information obtained from PDB file served as the

experimental evidence for each modification that was compared with

the results obtained from the predictive models.

2.2 | Training dataset generation

A training dataset was curated from high-resolution protein crystal

structures (resolution ranges from 1.5 to 2.0 Å), deposited to PDB

database,19 dated 13 July 2020. Total 13 142 PDB entries were pre-

sent in the dataset (Table S1). This dataset was termed as training

dataset original.

2.3 | Nonredundant training dataset generation

The training dataset original contained all possible protein structures

without any restriction on sequence identity. In addition to the train-

ing original dataset, two nonredundant datasets, training 100% and

training 30%, were generated. After removal of redundancy based on

sequence identity using CD-HIT.57 This dataset contained 7188

unique PDB files and total 60 337 cysteine residues (Table S2).

Similar to training 100% dataset, training 30% dataset with sequence

identity of 30% was generated to ensure no structural bias. The data size

was further reduced (Table 1). A total of 3121 unique proteins and 25 435

cysteine residues were present in this dataset (Table S3).

The reason to choose three different datasets was to identify if

the bias present in the training original dataset affected the overall

performance. To address this question three DeepCys models were

developed based on the three training datasets, namely, DeepCys

original, DeepCys 100% and DeepCys 30%.

The number of PDB files and corresponding cysteines undergoing

different modifications were shown for three different training

datasets (Table 1). To note, that there are certain PDB files containing

multiple cysteines with different modifications. Therefore, the total

number of PDB files reported in Table 1 was higher than the actual

number of PDB files in the dataset (Table S1).

2.4 | Identification of different cysteine
modifications

2.4.1 | Disulphide

Disulphide modifications were identified in each PDB entry based on the

distance criteria. The structural disulphide bond length was reported as

2.05 Å and that of reversible disuphide was 2.18 Å. Hence, 2.3 Å distance

was chosen to define any disulphide bond connecting two sulfur atoms

from two cysteine residues.58 If both the cysteines belong to the same

chain, the modification was considered as intrachain disulphide, in contrast

to interchain disulphide where two cysteines belong to two different pro-

tein chains. The calculation was implemented by in-house python script

exploiting the Biopython libraries, namely, PDB and NeighbourSearch.

Each sulfur atom in disulphide modification was considered as half-cystine.

2.4.2 | Metal-binding

The metal ions identified in the training dataset were the following, Zn2+,

Cu2+, Cd2+, Fe2+/Fe3+ and Hg2+. The zinc ion was observed maximum

number of times in the dataset (Table 2). It was noted earlier that the

thiolate group of cysteine formed coordinate bonds with a wide range of

border line to soft cations, such as Zn2+, Cu2+, Fe2+, Fe3+, Cd2+, with maxi-

mum propensity towards zinc ion.59 Metal populations in three different

datasets were described in terms of percentage of metal ions present in

the dataset. The percentage of metal ion was described by the number of

specific metal ion divided by the total number of metal-binding cysteines.

The distance between sulfur atom of a cysteine and the metal ion varied

according to the type and the oxidation number of the metal ions. The

same metal ion could maintain different distances with a cysteine sulfur

atom, depending upon the function of the metalloprotein.60 The maximum

metal ion - S (Cys) distance of 2.6 Å (that was, Cd2+ − S distance) was

used, here, as search criteria. In-house python script was used to imple-

ment the calculation exploiting the Biopython libraries, namely, PDB and

Neighboursearch.
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2.4.3 | Sulphenylation

Sulphenylation modification was directly extracted from the PDB

header files where a cysteine residue has S-hydroxy modification,

mentioned as modified S-hydroxycysteine (CSO, as per PDB nomen-

clature). The CSO residue name was reported as a hetero atom in

PDB file. However, the current DeepCys model only considered coor-

dinates of ATOMs and not of HETATMs. Hence, each CSO was edited

to CYS and hydroxy part of CSO were removed, without changing the

cysteine local microenvironment.

2.4.4 | Thioether

Thioether modification was directly extracted from the PDB

header files, using following column matching criteria - the first

column has “LINK,” the second column has “SG,” the third column

has “CYS,” the sixth column has “C” and the seventh column not

having “CU.”

2.4.5 | Test dataset generation

The test dataset was curated from medium-resolution protein crystal

structures, resolutions ranging from 2.0 to 2.5 Å, reported in PDB data-

base.19 Total 10 864 PDB files (Table S4) with 125 652 cysteine residues

were retrieved (Table 3A). The selection criteria for different modifications

were the same as that of the training dataset. However, the metal ion

populations varied in test dataset, compared to those in the three training

datasets (Table 4). Test dataset was more populated with three heavy

metal ions, namely, Hg2+, Cd2+ and Pb2+, in comparison to the training

datasets. Pb2+ was completely absent in the training datasets and Cd2+ has

very low population in the training datasets.

2.4.6 | DUF dataset generated for cytochrome C
oxidase subunit II like trans-membrane (COX2) domains

In the current study, we focused on Cytochrome C oxidase (also

known as complex IV) subunit II like transmembrane domains involved

TABLE 1 Four different
modifications present in A, training
dataset original B, training 100% dataset
and C, training 30% dataset

(A) Training dataset original

Modification
Total number of PDB
structures analyzed

Total number of
cysteines analyzed

Disulphide 9179 85 452a

Thioether 979 3244

Metal-binding 3061 18 959

Sulphenylation 373 679

(B) Training 100% dataset

Modification No. of PDB files No. of cysteines

Disulphide 5015 48 138a

Thioether 513 1926

Metal-binding 1520 9808

Sulphenylation 218 465

(C) Training 30% dataset

Modification No. of PDB files No. of cysteines

Disulphide 2017 18 292a

Thioether 208 926

Metal-binding 786 5910

Sulphenylation 146 307

aNumber of half-cystines, two half-cystines constitute one cystine (containing disulphide bond).

TABLE 2 Variation of metal ion
populations (described in terms of
percentage, with respect to the total
number of metal-binding cysteines) in
different training datasets

Name of the metal ion Training original Training 100% Training 30%

Zn2+ 74.8 72.2 76.9

Hg2+ 10.3 13.1 12.3

Cu+/Cu2+ 4.7 5.4 5.1

Fe2+/Fe3+ 8.4 7.9 5.6

Cd2+ 1.7 1.7 1.6
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in electron transport chain. Cytochrome c oxidase is a large integral

membrane protein containing multiple chains and several metal pros-

thetic sites.61 This enzyme complex accepts four electrons from four

cytochrome C molecules and transfers those to two oxygen mole-

cules. Subunit II is one of the three subunits involved in substrate

binding and formation of the functional core of complex IV.62 This

subunit transfers electrons, using its binuclear copper center, from

cytochrome c to the bimetallic center of subunit I. The binuclear cop-

per center was considered as the primary acceptor of electrons in

cytochrome c oxidase. However, many of the cytochrome C oxidase

crystal structures contain other subunits, apart from subunit II. Those

subunits contain other metal ions such as zinc and also several dis-

ulphide modifications. The cytochrome C oxidase proteins were

searched in DUFs reported in SUPFAM database.63 The keyword sea-

rch resulted into one DUF ID: DUF3098, only. The corresponding

SCOP family name to this DUF ID was cytochrome c oxidase subunit

II-like, transmembrane region. The PDB files reported in the SCOP

database were extracted (Table S5). Total number of cysteine modifi-

cation and the PDB IDs were reported (Table 3B). DUF dataset com-

prised of Zn2+ and Cu2+ ion only (Table 4). The population of Zn2+ ion

in DUF dataset, was significant, although it was low compared to that

of the training datasets. However, the Cu2+ ion population was very

high compared to the training datasets.

2.5 | Feature generation

To determine a particular modification of a cysteine, deep learning

approach was applied on a training dataset constructed from PDB

database. Each cysteine was uniquely identified by the PDB identifier

(ID), the chain ID, and the cysteine residue number. Six structural and

functional attributes were either computed or extracted from PDB

header file (Figure 2). The features computed were, (a) buried fraction,

(b) rHpy, and (c) the secondary structure motif around the cysteine

residue. The features extracted were, (a) amino acids present around

cysteine within a variable contact shell, (b) enzyme class of the protein

to which the cysteine belongs to and (c) the cysteine sequence motif.

The feature, pKa, has been identified as one of the important

parameters for cysteine function predictions.51,54 However, pKa com-

puted using PROPKA has a predefined value of 99.99 for disulphide

connectivity. This fixed pKa value for disuphide from PROPKA makes

the deep learning model circular in nature. As other pKa computations

were not automated like PROPKA, such as, constant pH MD

simulations,64 those cannot be used for automated feature

generation.

TABLE 3 Cysteine modifications
present in A) test-1 dataset and B) DUF
dataset

(A) Test-1 dataset

Modification
Total number of PDB structures
analyzed

Total number of cysteines
analyzed

Disulphide 8865 111 584

Thioether 421 1721

Metal-binding 1617 11 729

Sulphenylation 239 618

(B) DUF dataset

Modification No. of PDB files No. of cysteines

Disulphide 5 30

Metal-binding 6 36

Abbreviation: DUF, domains of unknown function.

TABLE 4 Variation of metal ion populations (described in terms of
percentage, with respect to the total number of metal-binding
cysteines) in test-1 and DUF dataset

Name of the metal ion Test 1 dataset DUF dataset

Zn2+ 69.0 44.0

Hg2+ 13.5 —

Cu+/Cu2+ 4.7 56.0

Fe2+/Fe3+ 5.2 —

Cd2+ 7.7 —

Pb2+ 0.01 —

Abbreviation: DUF, domains of unknown function.

F IGURE 2 Features used for training the model. Cartoons
representation of a protein with multiple cysteine thiol ( SH) groups
at the center, and the features on the periphery. Feature names
enclosed within blue ovals [Color figure can be viewed at
wileyonlinelibrary.com]
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2.6 | 1 and 2. Protein microenvironment (buried
fraction and rHpy) calculation

Protein microenvironments, quantified in terms of buried fraction and rHpy,

around all the 108 334 cysteines were computed using a FORTRAN pro-

gram developed earlier.56 This calculation required the following inputs:

(a) three-dimensional structure of the protein, (b) CHARMM topology and

parameter files,65 and (c) Rekker's fragmental constants of individual atom

types.66 Microenvironment calculations report two outputs, (a) buried frac-

tion and (b) rHpy. The buried fraction is defined as the normalized surface

area of the cysteine thiol group buried inside the protein. The values of this

parameter range from 0.0 to 1.0. Zero buried fraction indicates that the thiol

group is completely exposed to the solvent and vice versa (Figure 2). The

buried fraction of an amino acid (or its side chain) was computed in this

FORTRAN program by calling another FORTRAN program GEPOL93.67

The second parameter, rHpy, termed as microenvironment property

descriptor, describes the relative hydrophilic contribution of protein and

the solvent toward the cysteine thiol group within its first contact shell.

According to the mathematical formulation, rHpy value adopts an upper

limit of one, when embedded in a pure aqueous solvent. There is no lower

limit for rHpy value, which depends on the hydrophobicity of the protein

interior. In our current dataset, the lower limit of rHpy for cysteine thiol

group was −0.311. The buried fraction and rHpy together constituted pro-

tein microenvironment space around the cysteine thiol group.

3 | SECONDARY STRUCTURE (SS) MOTIFS

The secondary structures for all the 13 142 proteins, in the training origi-

nal dataset, were calculated using the DSSP software68 based on Kabsch

and Sander algorithm.69 The DSSP algorithm calculated the secondary

structure based on the three-dimensional structure. To understand the

effect of adjacent secondary structures around a cysteine, secondary

structure motifs were searched with variable lengths. Variation in the

length was introduced by a parameter, window size, that described the

number of amino acids on either side of the central cysteine. Window size

varied from 3 to 13. Multiple window sizes were tested and the window

size of seven produced the highest performance on test dataset

(Figure S1). Therefore, SS motif feature was generated with a window size

of seven depicting the secondary structures of 15 amino acids (7*2 + 1).

4 | PROTEIN/ENZYME CLASS

The enzyme or the protein class to which the protein belongs to, was

extracted from the PDB HEADER file.

5 | AMINO ACIDS PRESENT AROUND CYSTEINE
WITHIN A VARIABLE CONTACT SHELL

Primary sequence of a protein folds into three-dimensional structure,

assembling far off amino acid sequences within a given protein

scaffold. A protein scaffold may contain more than one hydration

layer, where protein atoms may interact with different layers of water

molecules, within radii of 4.5 and 8 Å.70 Analogous to hydration

layers, the catalytic sites also include primary and secondary interac-

tion shells where specific interactions were observed.71,72 The amino

acid signatures within first and second interaction shells were also

considered as one of the important features by other cysteine predic-

tion methods.44,47 The quantitative descriptor, rHpy, (feature 2) repre-

sents the numerical value obtained from the hydrophilic contributions

of each amino acid within the first contact shell, roughly 4.5 Å

radius.56 In this current feature, we have identified the amino acids

present within the variable contact shells around a cysteine residue.

The notion was to identify the optimal amino acid signature around a

cysteine residue. An array of 20 elements (each representing 20 natu-

rally occurring amino acids) was constructed for each of the four

radius values (5-8 Å, incremented by 1 Å). Each element depicted the

frequency of individual amino acids within a certain radius of the cys-

teine thiol group. In total there were 80 values (an array of 20 ele-

ments for each of the four different radii) in this feature.

6 | CYSTEINE SEQUENCE MOTIFS

A set of possible cysteine sequence motifs, namely, (a) CC, (b) CXC,

(c) CXXC, (d) CXXXC, (e) CXXXXC, (f) CXXCXXC, (g) CXXCXXCXXC,

and (h) CXXCXXCXXXC were observed earlier, mainly as a part of

metal-binding, thioether, and disulphide modifications.54 The cysteine

motifs were searched from the primary sequence of each protein,

within a variable window size of 3 to 13, incremented by the step size

of two. The window size indicated the number of amino acids present

on either side of the central cysteine residue. In some of the PDB files,

few amino acids were not reported in three-dimensional coordinate

(structure) although reported in the primary sequence, mentioned in

the PDB header file. In those cases, amino acid residue positions of

the coordinates were followed instead of the amino acid sequence, to

maintain the overall consistency in this study. For each window size, a

binary array of eight values was constructed, representing each of the

eight cysteine motifs. “1” marked the presence of a motif, whereas

“0” marked the absence in that particular stretch of amino acids. This

feature has 48 values (an array of eight values for the six different

window sizes).

6.1 | Metrics used to evaluate the efficiency
of DeepCys model

Three different metrics, namely, accuracy, sensitivity and specificity,

were used to measure the performance of the deep learning model on

various datasets. Three metrices were defined using four parameters

of the confusion matrix, namely, true positive (TP), true negative (TN),

false positive (FP), and false negative (FN) (Equations 1-3). A confu-

sion matrix tabulates the actual values and the predicted values, all-

owing one to understand the performance of the model. TP

750 NALLAPAREDDY ET AL.
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represents the number of correctly predicted data points as proper

positive class. FP represents the number of falsely predicted data

points as the positive class. Similarly, TN represents the number of

correctly predicted datapoints as the proper negative class and FN

represents the number of falsely predicted data points as the negative

class.

Accuracy= TP+TNð Þ= TP+ FN+FP+ FNð Þ, ð1Þ

Sensitivity = TPð Þ= TP+FNð Þ, ð2Þ

Specificity = TNð Þ= TN+FPð Þ, ð3Þ

As the accuracy values were expected to be more skewed toward the

majority class, in case of class imbalance (ie, the case in the present

dataset), it is not recommended to use the accuracy metrics to assess

the model.73 Instead, sensitivity is a better measure when focused

individually on each class.74 To measure the overall performance of

the DeepCys model on the entire dataset, a new metrics was deduced

based on simple arithmetic mean of sensitivity values obtained from

individual classes (all the four cysteine modifications), termed here as

macro-average of sensitivity.

6.2 | Description of deep-learning model

A neural network model was built using Keras, a high-level neural net-

work application programming interface running on top of a Ten-

sorFlow backend. The model was programmed in Python, version

3.8.2. The proposed neural network model has three convolution

layers followed by eight dense layers and a singular dropout layer.

Each convolutional layer contained filters. These filters were applied

on the input data to obtain features. Repeated application of these fil-

ters on the input generated a feature map. A feature map incorpo-

rated the necessary information detected from the input and leads to

the required output. A dense layer was a regular stack of nodes. Each

of these nodes received input from the nodes of the previous layer.

Each dense layer was associated with a weight matrix and a bias

matrix. These matrix parameters were updated during the training

process. The dense layers in the neural network model started with

512 nodes, covering all the powers of two (2n, n = 9-2), till the final

layer having four nodes that represented the four cysteine modifica-

tions. A singular dropout layer with a probability of .5 was placed

before the final dense layer. The dropout layer was different from

other layers as it did not contain any trainable parameters. The only

parameter associated with a dropout layer was a probability that

determined whether a node would be randomly dropped during the

training process. Dropout layers helped in reducing overfitting. Along

with this dropout, regularization was done to prevent overfitting.

There was a total of three skip connections in the architecture of

the neural network model (Figure 3). The data as it passed through

every layer have been outlined in the architecture. The input vector

has 146 values derived from the six features; one value each for

buried fraction, rHpy and enzyme class; 80 values for 20 naturally

occurring amino acids within four interaction shells with different

radii; 48 values from eight different cysteine sequence motifs in six

variable window sizes and 15 values from secondary structure folds.

The Leaky ReLU activation function was employed along with batch

normalization after every convolution layer and dense layer. The final

dense layer used a softmax activation function. The softmax activa-

tion function resulted in four different output values (four cysteine

modifications) which added up to one. The weights for all the layers

were initialized using the Glorot uniform function. The loss function

employed was weighted categorical cross-entropy to tackle the major

class imbalance in the training dataset. The weights corresponding to

each of the classes were obtained by modifying the inverse value of

their frequency in the dataset (Table S6). The optimizer used was

Adam.75 A grid search algorithm was employed to figure out the opti-

mal parameters for training the neural network. There were three

optimal hyperparameters according to the grid search algorithm,

namely, batch size, epochs and learning rate, having values of

256, 50, and 1e-4, respectively. Each epoch defined the process of

the deep learning model being trained on the entire dataset. In this

process of an epoch, the dataset was split into parts and the model

was consecutively trained on these parts, termed as batches. The

number of data points present in each batch represented the batch

size. The learning rate was another essential hyperparameter that

defined how quickly the weights of the neural network vary after each

iteration of the training process.

Two model checkpoints were employed. The first checkpoint

saved the best performing model after every epoch of training. The

second checkpoint reduced the learning rate of the model by a factor

of 0.1, if the performance did not improve for five consecutive

epochs. In absence of the second checkpoint, the model failed to con-

verge due to a very high learning rate. The failure was due to the

attempts of the optimizer making greater changes to the weights and

overshooting the location of the optima. A reduced learning rate hel-

ped the model converge to the optima as it steps slowly toward the

optima without overshooting.

The feature generation and extraction along with the model train-

ing were carried out on a laptop, that is, MSI GF63 Thin Core i5 ninth

Gen - (8 GB/512 GB SSD/Windows 10 Home/4 GB Graphics) which

was equipped with an NVIDIA GeForce GTX 1650 Max Q GPU.

7 | RESULTS AND DISCUSSION

7.1 | Selection of all-feature criteria

As described above, there were total 146 values deduced from the six

features. Here we attempted to identify the best set of values (and

eliminate redundant values, if any) to increase the accuracy of the

model using two different algorithms, namely, recursive feature elimi-

nation76 and the genetic algorithm.77 The set of values suggested by

these two algorithms were used to train the DeepCys model on the

training original dataset. These models were tested on test 1 dataset
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that resulted into a dip in macro-average of sensitivity values (77.1%

and 76.7%, respectively) compared to the all-feature criteria (79.3%).

This observation indicated that the feature selection can decrease

complexity but might not, necessarily, improve accuracy.78 Hence, we

have used all-feature criteria to develop DeepCys model.

7.2 | Variation of the features across the cysteine
modifications

7.2.1 | Features 1 and 2. Protein
microenvironment (buried fraction and rHpy)

Prior to performing deep neural-network based cysteine function pre-

dictions, each feature was analyzed for the given dataset. The first fea-

ture, buried fraction, was used by many of the cysteine prediction

functions, albeit, in slightly different way, that is, solvent accessibil-

ity.32,44,47 The buried fraction was defined as the normalized surface

area of the cysteine thiol group buried inside the protein. Whereas, sol-

vent accessibility was the area on the protein surface that is probed

accessible using a certain probe radius.79,80 Buried fraction showed

clear variation in terms of the mean and SD values across the four dif-

ferent modifications (Table S7). The mean buried fraction value of the

disulphide modification indicated its presence in the most hydrophobic

region of the protein structures. In contrast, the thioether modification

was identified to be maximally exposed to the solvent, according to the

mean value. The buried fraction values of metal-binding and sul-

phenylation modifications were comparable (Figure 4A). These observa-

tions were in accordance with our previous studies.54,55

The second feature, rHpy, was a measure of hydrophilicity of the

microenvironment around a cysteine residue. Higher the value of

rHpy, greater is the hydrophilicity of the surrounding microenviron-

ment. The maximum limit of rHpy is one, indicating a complete aque-

ous environment. It is expected that the completely buried protein

region will be more hydrophobic and the completely exposed protein

region will be mostly hydrophilic. Based on the mean and SD of rHpy,

disulphide modifications were embedded in hydrophobic microenvi-

ronment and thioether in a relatively more hydrophilic microenviron-

ment (Table S8). The other two modifications had intermediate values,

and those were comparable (Figure 4B).

7.2.2 | Feature 3: Secondary structure (SS) Motifs

Secondary structure motifs (also known as fold) are often conserved

across the protein family and play an important role in various protein

functions.81,82 Many of the cysteine function prediction tools23,32,47

used secondary structure as one of the features. To determine the

F IGURE 3 Workflow and architecture of the deep learning model for structure-based prediction
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optimal length of the secondary structure folds around the cysteine of

interest, a range of window sizes from 3 to 13 was scanned and

DeepCys original model was tested on each window size. The window

size of seven has produced the best result in the DeepCys model; this

value of window size indicated secondary structures of 15 consecutive

amino acids with the cysteine of interest at the centre (Figure S1).

According to DSSP notations, each secondary structure was represented

by one-letter code; alpha helix, beta bridge, strand, turn and bend and

represented by H, B, E, T, and S, respectively. Thus, there were 108 334

arrays (each representing a cysteine residue in the training dataset origi-

nal (Table 1a) and each array contained 15 secondary structure elements

represented by one letter code. To understand the pattern of the sec-

ondary structure folds, the matrix of 108334 x 15 dimension was clus-

tered using CD-HIT with a similarity cut off 70% (choice of this cut off

was empirical), that is, each cluster has common secondary structure

folds with 70% similarity. To compare across the clusters, normalized

cluster size was computed using the number of secondary structure folds

present in each cluster divided by the total number of instances in each

cysteine modification (Tables S9). Broadly, 12 secondary structure folds

were identified based on clustering (Figure 5). Preferences of the folds

for each modification were shown (Table 5).

7.2.3 | Feature 4: Protein/enzyme class

Twelve major protein families and enzyme classes were noted in the

training original dataset (Table 6). As we have only tabulated the major

families and classes, summations of the rows are less than 100%. This

analysis exhibited preferences of a specific cysteine modification

toward a specific protein/enzyme class. Disulphide modifications pre-

dominantly belong to the hydrolase enzyme class and in immune sys-

tems, whereas other modifications were less frequently observed in

these two protein/enzyme classes. Moreover, in toxin proteins, only

modification (out the four mentioned here) observed was disulphide

(Table 6). The role of disulphide linkages in toxin proteins was well

established.83,84 The metal-binding modifications were predominant in

transferase, transcription factors and ligase enzyme classes (Table 6).

The metal ions were reported to be essential in nucleic acid structure

stabilization59 and function, such as transcription regulation upon

DNA/RNA binding.85 Metal prosthetic groups containing iron, zinc and

copper ions were identified in electron-transport chains.61 The coordi-

nate bond formed between cysteine thiolate and Fe(III) plays a pivotal

role in the functions of various heme containing proteins, such as,

P450, cytochrome C, hemoglobin.86 The photosystems and electron

transport chain proteins (cytochrome C is one such) contained

thioether modifications only (Table 6). The presence of two thioether

linkages in a conserved CXXCH motif87 were well known in cyto-

chrome C protein family involving the heme vinyl groups and the cyste-

ine thiols.

7.2.4 | Feature 5: Amino acids within variable
contact shells around a cysteine residue

The hydrophilicity around cysteine residue (denoted by rHpy) was

computed within the first contact shell. However, the molecular inter-

actions persist beyond the first contact shell.71 Hence, contact shells

with larger radii (6, 7, and 8 Å) were also considered in this feature.

The frequencies of the amino acids around cysteine were defined as

the number of times an amino acid appeared in a particular modifica-

tion divided by the number of cysteines in that modification. The larg-

est radius of 8 Å (describing the second contact shell70) was

considered for comparison across the four modification (Figure 6).

The most frequently occurring amino acids within other radii were

also reported (Table S10). The most frequently occurring amino acid

(within 8.0 Å) around disulphide modification was cysteine. Two cys-

teine in the proximity, happens to be half-cysteines those are involved

in formation of disulphide bond. For metal-binding, the most fre-

quently occurring amino acids within the second contact shell (8.0 Å)

were cysteine and glycine. However, within the first contact shell

(4.5 Å) the most populated amino acids were glycine and arginine.

Occurrence of arginine-glycine rich motifs in mRNA-binding proteins

and transferase enzymes were well known.88 The highest frequencies

of metal-binding cysteines, in the current dataset, were observed in

transferase and transcription factors (Table 6).

Three of the modifications, namely, disulphide, thioether and

suphenylation, in general, have showed higher preferences towards,

beta-turn-beta secondary structure motif (Table 5) and exhibited

highest content of either Cys/Ser, Cys/Gly, or Ser/Gly preferences

(Figure 6). The turn and linker regions were reported earlier with high

preferences toward, Cys, Ser, or Gly residues.89

F IGURE 4 Variation in the four cysteine modifications for A,
buried fraction and B, rHpy values [Color figure can be viewed at
wileyonlinelibrary.com]
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7.2.5 | Feature 6: Cysteine sequence motifs

Cysteine sequence motifs were mostly associated with metal-binding

and thioether modifications. Several of the cysteine metal-binding

prediction tools used the metal binding sites in the proteins.34-36 Eight

sequence motifs reported earlier54 were used to generate the sixth

feature. The highest window size of 13 was employed to perform the

motif search. The frequencies of these eight motifs were calculated

F IGURE 5 Different
secondary structure folds
identified from clustering
analysis; A, helix beta; B, beta
turn helix; C, turn beta; D, turn; E,
beta helix turn helix; F, turn
helix; G, helix turn helix; H, helix
turn; I, beta helix; J, beta turn
beta; K, beta-helix-beta; L, helix

turn beta

TABLE 5 Percentage of different secondary structure motifs in four different modifications; helix, turn and beta represented by H, T, and B

Modification/ss motif H-T-H H-T H-T-B H-B T-H T-B T B-H-B B-H-T-H B-T-B B-H B-T-H

Disulphide 14.7 6.0 28.9 — 4.2 — 4.0 0.9 3.8 28.6 11.1 4.6

Metal-binding — — 9.3 12.8 10.4 — — 5.8 — 34.8 — 13.9

Sulphenylation 19.2 30.8 23.1 26.9

Thioether 38.2 — — — 44.1 8.8 — — — — — 8.8

Note: The Secondary Structure Motif with the highest percentage for each modification mentioned in bold.

TABLE 6 Occurrence of different cysteine modifications observed in different protein/enzyme classes, 1. Hydrolase, 2. Immune system,

3. Hydrolase inhibitor, 4. Oxidoreductase, 5. Toxin, 6. Transferase, 7. Transcription, 8. Ligase, 9. Lyase, 10. Sugar binding, 11. Electron transport,
12. photosynthesis

Modification 1 2 3 4 5 6 7 8 9 10 11 12

Disulphide 31.8 13.6 8.5 4.9 3.0 0.1 0.1 0.1 0.1 2.2 0.5 0.0

Metal-binding 10.1 0.2 0.0 20.2 0.1 15.1 10.1 4.2 1.9 0.1 1.9 0.0

Sulphenylation 17.4 1.2 0.0 21.6 0.0 14.8 0.4 0.4 7.4 4.1 0.9 2.4

Thioether 6.1 1.2 5.7 28.4 0.0 14.9 0.4 0.4 7.4 4.1 18.7 7.2

Note: Values reported in percentage of (number of times a modification is present in a protein/enzyme class)/total number of modifications). The enzyme class

with the highest percentage for each modification is mentioned in bold. The other high percentage values per modification (along each row) are shown in italics.
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for each of the four modifications (Table 7). The frequency

(in percentage) was defined as the number of times a motif appeared

in a modification divided by the number of instances in that particular

modification. It is not necessary that in all the instances, any of these

eight motifs would be present. Hence, summation of the motif per-

centages was observed to be less than 100% for all the cysteine modi-

fications. As per our analyses, disulphide modification was ubiquitous

and has not shown preferences towards a particular motif. Presence

of almost all the motifs were identified in the metal binding modifica-

tion. The CXXC motif was also prevalent in thioether modification.

Most of the observed thioether modifications in cytochrome C family

proteins were part of CXXCH motif.87

7.2.6 | Evaluation of DeepCys model performance

The DeepCys model was trained on the three variants of the training

datasets, namely, training original, training 100%, and training 30%.

Here we have studied the performances of these three models evalu-

ated on the test dataset to understand these two opposing effects. As

per the hypothesis, the models trained on the nonredundant datasets

should better perform compared to DeepCys original model. On the

other hand, the significant reduction of the dataset size may reduce

the performance.

All the three DeepCys models, namely, DeepCys original,

DeepCys 100%, and DeepCys 30% were tested on test dataset. Over-

all performances of the models, measured in terms of the macro-

average values (see method section for definition) monotonically

decreased from DeepCys original to DeepCys 30% (79.25%, 78.25%,

and 74%, respectively) indicating that the overall performance was

related to the size of the dataset and not to overfitting. However, the

sensitivity values for individual modifications did not follow the same

trend of the overall performance (Table 8). Although sensitivity met-

rics was considered, other two metrics were also computed for each

modification (Table S11). The sensitivity values for disulphide and

thioether monotonically decreased for the three models following the

trend of the overall performance, whereas that of sulphenylation

remained more or less the same. In case of metal-binding modifica-

tion, sensitivity values monotonically increased from DeepCys original

to DeepCys 100%, exactly reverse of the overall trend. This observa-

tion could be, plausibly, explained based on the types and the fre-

quencies of metal ions present in training datasets (Table 2) vs test

dataset (Table 4). These two independent datasets have significant

variation in types and frequencies of metal ions. For example, in all

the three training datasets, Zn2+ ion propensity was more than 72%,

whereas in test dataset that was only 69%. Moreover, the heavy

metal ions, like, Hg2+ and Cd2+ were almost negligible, in training

datasets, in contrast to a significant population of those heavy metal

ions, in test dataset. The Pb2+ ion was present in test dataset, that

was non-existent in the training dataset. On the other hand, other

three modifications, namely, disulphide, thioether or sulphenylations,

were trained and tested on the same data type.

The DeepCys original model has produced the highest overall

performance in terms of the macro-average value of sensitivity.

Hence, DeepCys original model was chosen as the optimal model on

the test dataset.

7.3 | Comparison of the current and the existing
cysteine prediction methods on “test sample dataset”

The model developed in this work (DeepCys original) was compared

with the published literature, for both specific and multiple cysteine

function prediction methods. Three different types of specific cyste-

ine functions were tested, namely, metal-binding, disulphide and sul-

phenylation. Following prediction methods were tested - metal ion

binding site prediction and docking server (MIB),30 PSIPRED-

METSITE32 and MetalDetector v2.0,31 for metal binding; DIS-

ULFIND22 and Cyscon,23 for disulphide and SulCysSite41 and

DeepCSO,90 for sulphenylation. No explicit prediction method was

known, to the best of our knowledge, for thioether, although DiANNA

has implicitly indicated the predictability of thioether modification.50

F IGURE 6 Variation in the four cysteine modifications for the
most frequently observed amino acids within the contact shell of 8 Å
radius around cysteine [Color figure can be viewed at
wileyonlinelibrary.com]

TABLE 7 Percentage (%) of eight
different motifs, 1. CC, 2. CXC, 3. CXXC,
4. CXXXC, 5. CXXXXC, 6. CXXCXXC, 7.
CXXCXXXXXC, 8. CXXCXXCXXXC, in
four cysteine modifications

Modification 1 2 3 4 5 6 7 8

Disulphide 7.0 7.3 4.2 9.2 9.4 0.2 0.1 0.0

Thioether 1.1 1.5 54.4 1.4 2.9 0.0 1.3 0.0

Metal-binding 9.7 14.0 49.4 15.1 17.0 3.6 2.0 0.3

Sulphenylation 6.8% 4.9 7.4 5.4 8.1 0.0 0.0 0.0

Note: The two largest percentages are indicated in bold.
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For multiple cysteine function prediction, DiANNA50 and Cy-preds53

were used.

As most of the existing models were presented in terms of web

servers, it was formidable task to compare all the 125 652 datapoints

of test dataset, manually on webservers. Hence, a random sample of

100 datapoints were selected per modifications from the test dataset

and used consistently for comparison across the methods, termed as

“test sample dataset” (Table 9A). As there were no tools available

explicitly for thioether prediction, DeepCys performance on thioether

cannot be compared. The DeepCys original outperformed other spe-

cific cysteine function prediction methods for three other modifica-

tions on test sample dataset.

For disulphide prediction studies, the prediction tool DIS-

ULFIND was based on protein sequence only and its performance

was lower compared to that of DeepCys. Cyscon, the other dis-

ulphide prediction server from Zhang's lab, exploited machine learn-

ing approach developed on protein structural information. However,

it has lower performance compared to DeepCys on test sample

dataset.

For metal binding studies, there were six metal ions present in

the training and test datasets, and those widely varied in terms of

charge, radius and chemical properties. Hence, the prediction perfor-

mance was likely to vary from one metal ion to the other. In the cur-

rent test sample dataset, the cations identified were either Cu2+ or

Cd2+. The DeepCys model has showed 86% and 76% sensitivity

values for these two metal ions. The reported sensitivity values for

Cu2 and Cd2+ ions, by MIB were 85.6% and 41.2%, respectively on

their original dataset and 76% and 36%, respectively on the “test sam-

ple dataset.” Hence, overall performance of MIB on the test sample

dataset was poor compared to that of DeepCys. The results obtained

from MetalDetectorv2.0, on test sample dataset, was comparable to

that of DeepCys. The PSIPRED-METSITE only predict for Cu2+ and

not for Cd2+. The prediction accuracy by PSIPRED-METSITE for Cu2+

was only 16%.

In terms of sulphenylation prediction, the sensitivity value

reported by SulCysSite (a sequence-based method) was only 62.89%.

The newly developed, deep learning-based approach, DEEPCSO, for

sulphenylation prediction yielded 32% of sensitivity value, on the test

sample dataset. In the original work of DEEPCSO, the sensitivity was

reported at 71.7%, that was comparable to the DeepCys original.

Thus, DeepCys outperformed both the existing methods, on test sam-

ple dataset.

TABLE 8 Performance of DeepCys
original, DeepCys 100% and DeepCys
30% on test dataset

Modification DeepCys original DeepCys 100% DeepCys 30%

Disulphide 87% 76% 71%

Thioether 75% 74% 62%

Metal-binding 72% 78% 80%

Sulphenylation 83% 85% 83%

Note: The performance was measured in terms of sensitivity. The model with the highest sensitivity for

each modification has been mentioned in bold.

TABLE 9 Comparative analysis of DeepCys original model with cysteine function prediction methods. The performance was measured in
terms of sensitivity on the sample test 1 dataset with A) specific cysteine function prediction algorithm and B) general cysteine function
prediction algorithms

(A) Specific cysteine function prediction algorithm

Function Deep-Cys DISULFIND Cyscon Metal Detector V2.0 MIB PSIPRED-METSITE SulCysSite DeepCSO

Disulphide 96% 34% 80% — — — — —

Metal-binding 81% — — 81% 56% 16% — —

Sulphenylation 71% — — — — — 28% 32%

Thioether 67% — — — — — — —

(B) General cysteine function prediction algorithms

Modification DeepCys DiANNA Cy-preds

Disulphide 96% 40% (5%) a 98%

Thioether 67% 0% —

Metal-binding 81% 39% (3%) b 95%

Sulphenylation 71% — —

Note: The model with the highest sensitivity for each modification has been mentioned in bold.

Abbreviation: DiANNA, diamino acid neural network application.
aWithin parenthesis, the half-cysteine vs free-cysteine option was used and outside parenthesis, disulphide connectivity was used.
bWithin parenthesis, the ligand bound vs free cysteine option was used and outside parenthesis ligand bound vs half-cysteine was used.
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The multiple cysteine function prediction method, DiaNNA can

predict three cysteine functions. The DiaNNA original work published

in 2005, attempted to predict multiple functions, the first attempt of

its kind. However, that work have separately predicted ligand-binding

states and disulphide connectivity, unlike, DeepCys that is a compre-

hensive model to predict any of the four modifications simulta-

neously. There were two options in DiaNNA, (a) disulphide

connectivity and (b) ternary classification. Under ternary classification,

there are three options, ligand-bound vs half-cystine, ligand-bound vs

free cysteine and half-cystine vs free cysteines. The ligand-bound vs

half-cystine option compared the probabilities of ligand-bound state

to disulphide connectivity. The other option was comparison of prob-

abilities among ligand-bound state and free thiol state. The DiANNA

original work has reported only 41.8% success in prediction of dis-

ulphide bonds in proteins, that was based on protein sequence feature

only. For test sample dataset, performance of DiANNA was compara-

ble with their original work when, disulphide connectivity option was

considered. The result was very poor when half-cystine vs free cyste-

ine option was explored for disulphide modification (Table 9B). Dia-

NNA has defined four ligand types, namely, Fe2+/Fe3+, Zn2+, Cd2+

ions, and carbon atoms. Presumably, the last one indicated thioether

formation, although, thioether was not explicitly mentioned in the

original work. Both ligand-bound vs half-cystine and ligand-bound vs

free cysteine options were explored, the first one performed better

than the second one. Individual Cu2+ and Cd2+ ion sensitivities

reported by DiaNNA were 40% and 38% respectively, using ligand-

bound vs half-cystine option. The results obtained from the second

option was very poor. Thioether prediction was tested for DiaNNA on

test sample dataset, yielding 0% sensitivity, indicating that it was

unable to capture thioether formation. The other multiple cysteine

function prediction algorithm, Cy-preds, was able to predict three

functions, namely, disulphide, metal-binding and post-translational

modifications. Disulphide prediction performance of Cy-preds on test

sample dataset was comparable to that of DeepCys, although, the for-

mer one was slightly better. For metal-binding prediction, Cy-preds

exhibited better performance than that of DeepCys with respect to

the test sample dataset (Table 9). However, the DeepCys was able to

predict any four cysteine functions, in contrast to Cy-preds, predicting

only three.

7.4 | Elucidation of cysteine function in DUF
proteins belonging to cytochrome C oxidase subunit
II-like transmembrane region

In cytochrome C oxidase protein, there were multiple chains con-

taining several cysteines, involved in different functions, such as

Zn2+ ion-binding in chains F and S (subunits VB), Cu2+ ion-binding

in chains B and O (subunit II) and formation of disulphide bonds, in

chains H and U (subunits VIB1) and so forth. The subunit II contains

binuclear copper center that is the primary electron acceptor from

reduced cytochrome C. There were six proteins selected from DUF

ID, belonging to cyctochrome C subunit II like transmembrane

region, namely, (a) catalytic core (subunits I and II) of cytochrome c

oxidase from rhodobacter sphaeroides (PDB:2gsm), (b) bovine heart

cytochrome C oxidase modified by dccd (PDB:2dys), (c) bovine

heart cytochrome C oxidase in azide-bound state (PDB:1ocz),

(d) cytochrome c oxidase from rhodobactor sphaeroides (Wild type)

(PDB:1 m56), (e) The aberrant BA3-cytochrome-C oxidase from

thermus thermophilus (pdb:1ehk), and (f ) the paracoccus

denitrificans two-subunit cytochrome C oxidase complexed with an

antibody Fv fragment (PDB: 1ar1). Subunit II (COX2) were common

in all these proteins. Total 66 cysteine residues were present in

these pdb files, out of those 66, 36 were metal-binding and

remaining 30 were disulphide modifications. DeepCys original

model prediction was 80% correct for disulphide and 94.4% for

metal-binding (Table S12). In case of metal-binding cysteine, only

two were incorrectly predicted, the binuclear copper center, chain

B:cys216 and chain B:cys220, from pdb:1ar1. In case cys220, the pre-

diction probabilities of cysteine and thioether were equivalent,

0.41; changes occurred at the third decimal place. Analysis of the

six features (high BF, 1.0, low rHpy, helix-turn-helix motif, oxidore-

ductase enzyme class, presence of His in the vicinity of cys and

cxxc motif ) around Cys220, indicated equal probabilities of

thioether and metal-binding modifications. Thus, it revealed that

the prediction probabilities by DeepCys were highly dependent on

the cysteine features.

7.5 | Web applications, backend calculations,
and standalone program

A user-friendly web application, DeepCys original model, was built

using the Django web framework. The flowchart of the web applica-

tion was shown (Figure 7A). The web application (https://deepcys.

herokuapp.com/) was deployed using Heroku, a container-based

cloud platform as a service. The structure-based prediction model can

be accessed by clicking the “structure prediction” button on the navi-

gation bar. The web application has a “form” that requests three

inputs, corresponding to a cysteine, namely, (a) PDB ID of the protein,

(b) chain, and (c) residue ID of the cysteine (Figure 7B). These three

parameters were relayed to the deep learning model. Before running

the prediction model, the six features of the cysteine residue were

either computed or extracted from PDB file. The deep learning model

used the six features to predict the probability of a cysteine modifica-

tion. The prediction outputs four probability values along with the

final prediction of the cysteine modification (Figure 7C).

In addition to the web application, a batch prediction model was

developed. The purpose of the batch prediction model was to make

multiple predictions at a time in contrast to single predictions on the

web application. The batch prediction model requires the input file

containing the above three parameters corresponding to a cysteine

residue. The installation and usage instruction were available on the

GitHub repository. In addition, the python codes for feature genera-

tion, extraction and model training were also available on GitHub

repository (https://github.com/vam-sin/deepcys).
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8 | CONCLUSION

Cysteine thiol group is highly reactive. It participates in different bio-

chemical reactions leading to multiple modifications. Accurate predic-

tion of these modifications is crucial to elucidate the cysteine

functions, particularly, in proteins of unknown functions and DUFs. In

this study, we present a deep learning-based approach to predict any

one of the four most abundant cysteine modifications. Novelty of this

work was prediction of maximum number of cysteine modifications.

Moreover, thioether prediction was not attempted earlier. The

DeepCys model developed in this work requires the protein structure

in PDB format, the residue number and the chain identifier. Six fea-

tures were either extracted or computed from PDB file those were

used by deep learning approach. The final output was the probability

values for four cysteine modifications, namely, disulphide, metal-bind-

ing, thioether, and sulphenylation. The modification with highest prob-

ability was reported as the predicted modification. The current

prediction was benchmarked across the existing cysteine prediction

tools. The DeepCys performance was better than most of the existing

methods, for the given dataset. The tool is available both as a

webserver and as a standalone program.
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